Question 1. Suppose V is a vector space over \mathbb{F} with a basis of order n. Then prove "Every basis of V has order n"

My Answer 1. Support T is another basis. Since S is independent and T is spanning, $|T| \ge |S|$. The other direction is less trivial, since T might be infitie, and Steinitz does not immediately apply. Instead, we argue as follows: since T is linearly independent, every finite subset of T is independent. Also, S is spanning. So every finite subset of T has order at most |S|. So $|T| \le |S|$. So |T| = |S| (copy from Part IB - Linear Algebra)